2,415 research outputs found

    More Evidence for a Distribution of Tunnel Splittings in Mn12_{12}-acetate

    Full text link
    In magnetic fields applied parallel to the anisotropy axis, the magnetization of Mn12_{12} has been measured in response to a field that is swept back and forth across the resonances corresponding to steps N=4,5,...9N=4,5,...9. The fraction of molecules remaining in the metastable well after each sweep through the resonance is inconsistent with expectations for an ensemble of identical molecules. The data are consistent instead with the presence of a broad distribution of tunnel splittings. A very good fit is obtained for a Gaussian distribution of the second-order anisotropy tunneling parameter XE=ln(E/2D)X_E=-\ln(\mid E\mid/2D). We show that dipolar shuffling is a negligible effect which cannot explain our data.Comment: minor corrections (PACS nos, signs in Fig. 2

    Asymmetric Berry-Phase Interference Patterns in a Single-Molecule Magnet

    Full text link
    A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed for HL=0. Reversal of HL results in a reflection of the transverse-field asymmetry about HT=0, as expected on the basis of the time-reversal invariance of the spin-orbit Hamiltonian which is responsible for the tunneling oscillations. A fascinating motion of Berry-phase minima within the transverse-field magnitude-direction phase space results from a competition between noncollinear magnetoanisotropy tensors at the two distinct Mn sites.Comment: 4 double-column page

    Non-equilibrium Magnetization Dynamics in the Fe_8 Single-Molecule Magnet Induced by High-Intensity Microwave Radiation

    Full text link
    Resonant microwave radiation applied to a single crystal of the molecular magnet Fe_8 induces dramatic changes in the sample's magnetization. Transitions between excited states are found even though at the nominal system temperature these levels have negligible population. We find evidence that the sample heats significantly when the resonance condition is met. In addition, heating is observed after a short pulse of intense radiation has been turned off, indicating that the spin system is out of equilibrium with the lattice.Comment: Version to appear in Europhysics Letters. Minor changes and updated reference

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Characterization of 1D photonic crystal nanobeam cavities using curved microfiber

    Get PDF
    We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement

    Abrupt Transition between Thermally-Activated Relaxation and Quantum Tunneling in a Molecular Magnet

    Full text link
    We report Hall sensor measurements of the magnetic relaxation of Mn12_{12} acetate as a function of magnetic field applied along the easy axis of magnetization. Data taken at a series of closely-spaced temperatures between 0.24 K and 1.4 K provide strong new evidence for an abrupt ``first-order'' transition between thermally-assisted relaxation and magnetic decay via quantum tunneling.Comment: 4 pages, including 7 figure

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15
    corecore